
O triângulo é um polígono formado por três segmentos fechados que unem três pontos diferentes (vértices). Os vértices de um triângulo não podem ser colineares. Esta figura geométrica é uma das formas poligonais fundamentais da geometria.
O triângulo é uma das figuras geométricas mais importantes e amplamente utilizadas na ciência e tecnologia, por isso o estudo de suas propriedades vem sendo realizado desde a antiguidade. Um exemplo óbvio que temos nas pirâmides do Egito.
Uma característica importante dos triângulos é que eles não podem ser deformados. Por esta razão, eles são comumente usados no projeto de elementos estruturais em arquitetura (o projeto da Torre Eiffel é baseado em uma composição de formas triangulares) e engenharia (por exemplo, suportes fixos para painéis solares).
Na geometria é de grande importância porque todos os polígonos podem ser decompostos em triângulos.
tipos de triângulos
Essas figuras geométricas podem ser classificadas seguindo diferentes critérios:
Pelo tamanho dos ângulos internos pode ser:
Triângulo Agudo: Todos os ângulos internos são agudos (menos de 90 graus).
Triângulo obtuso: existe um ângulo maior que 90 graus.
Triângulo retângulo: um dos ângulos é de 90 graus, um ângulo reto. Nesse caso, os dois lados que formam um ângulo reto são chamados de catetos, e o lado oposto ao ângulo reto é chamado de hipotenusa.
Como na geometria euclidiana, a soma dos ângulos de um triângulo é 180º. Portanto, pelo menos dois ângulos no triângulo devem ser agudos (menos de 90º).
Pelo número de lados iguais, esses números podem ser:
Triângulo escaleno: os três lados não são iguais.
Triângulo isósceles: dois lados são iguais. Esses lados são chamados de lado, o terceiro lado é chamado de base. Em um triângulo isósceles, os ângulos da base são iguais.
Triângulo equilátero: os três lados são iguais. Em um triângulo equilátero, todos os ângulos são iguais a 60°.
Como calcular a área e o perímetro de um triângulo?
Com base na figura abaixo, para obter o perímetro e a área de um triângulo, podemos usar as seguintes fórmulas:
Para calcular o perímetro, basta somar o comprimento dos lados da figura: a + b + c.
A fórmula para encontrar a área de um triângulo é metade do produto da base (não dos lados) pela altura:
A = (bh) / 2
Caso não saibamos a altura, podemos aplicar a fórmula de Heron.
Onde:
a, b e c correspondem aos três lados da figura geométrica.
A é a área
s é o semiperímetro (encontre o perímetro e divida por dois):
No caso de um triângulo retângulo, um dos catetos é a base e o outro corresponde à altura. Isso facilita o cálculo da área.